Stage Marine Gas Turbine Blade

نویسندگان

  • V. NagaBhushana Rao
  • Niranjan Kumar
چکیده

Turbine blades of a gas turbine are responsible for extracting energy from the high temperature, high pressure gases. These blades are operated at elevated temperatures in aggressive environments and are subjected to large centrifugal forces. As many as 42 percent of the failures in gas turbine engines were only due to blading problems and the failures in these turbine blades can have dramatic effect on the safety and performance of the gas turbine engine. In this research paper, an attempt has been made to analyze the failure of gas turbine blade through Mechanical analysis. The blade under investigation belongs to a 30 MW gas turbine engines used in marine applications and is made of Nickel-Base superalloys. Before failure, the turbine blade was operated for about 10000 hours while its service life was expected to be around 15000 hours. Mechanical analysis has been carried out assuming that there might be failure in the blade material due to blade operation at elevated temperature and subjected to large centrifugal forces. The gas turbine blade model profile is generated by using CATIA V5R21software. The turbine blade is analyzed for its thermal as well as structural performance. It was observed that there was no evidence of rubbing marks on the tip section of turbine blade indicating the elongation of the blade is within the safe limit. Maximum stresses and strains are observed near to the root of the turbine blade and upper surface along the blade roots. Maximum temperatures are observed at the blade tip sections and minimum temperature at the root of the blade. Temperature distribution is decreasing from the tip to the root of the blade section. The temperatures observed are below the melting temperature of blade material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aero-thermal-elasticity-materials Optimization of Cooled Gas Turbine Blades: Part I

The first lecture in this two-lecture sequence provides background and general concepts. The second lecture provides practical examples. The objective of these two lectures is to provide a modular design optimization tool description that will take into account interaction of the hot gas flow-field, heat transfer in the blade material, internal coolant flow-field, stresses and deformations of t...

متن کامل

Fatigue Life Consumption for Turbine Blades-Vanes Accelerated by Erosion-Contour Modification

A new mechanism responsible for structural life consumption due to resonant fatigue in turbine blades, or vanes, is presented and explained. A rotating blade or vane in a gas turbine can change its contour due to erosion and/or material build up, in any of these instances, the surface pressure distribution occurring on the suction and pressure sides of blades-vanes can suffer substantial modifi...

متن کامل

Simulating Cooling Injection Effect of Trailing Edge of Gas Turbine Blade on Surface Mach Number Distribution of Blade

In this research, a gas turbine blade cascade was investigated. Flow analysis around the blade was conducted using RSM and RNG.K-ε turbulence modeling and it is simulated by Fluent software. The results were considered for the cases as Mach number loss at the trailing edge of blade caused by vortexes that were generated at the end of blade. Effect of cooling flow through the trailing edge on th...

متن کامل

A lumped thermodynamic model of gas turbine blade cooling: prediction of first-stage blades temperature and cooling flow rates

Turbine Inlet Temperatures of 1500-2000K have become a sort of standard for most modern advanced applications. First-stage blades are obviously the most exposed components to such hot gases, and thus they need proper cooling. In the preliminary design of the blades and their cooling system, designers must rely on simple models that can be further refined at a later stage, in order to have an ap...

متن کامل

Assessment of various rotor tip geometries on a single stage gas turbine performance

Tip leakage loss introduces major part of losses of the rotor in axial gas turbines. Therefore, the rotor blade tip has a considerable effect on rotor efficiency. To understand the flow physics of the rotor tip leakage, we solve the flow field for different tip platforms (passive flow control) and by considering coolant tip injection (active flow control). Various blade tip configurations s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014